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The ket-bra algebra for quantum mechanics and for the quantum chemistryoin valence 
shells was made by this author fully covariant recently. The resulting "principle of linear covar- 
iance" allowed diverse approaches such as molecular orbital, valence bond, localized orbital 
theories to come out as special cases in particular basis frames not necessarily orthonormal. 
The principal also led to the pictorial VIF (valency interaction formula) methods for deducing 
qualitative quantum chemistry directly from the structural formulas of molecules. The present 
set of two papers (II on undirected graphs) develops graphs and graph rules for abstract linear 
vector spaces, bras, kets, and abstract operators as ket-bra dyads. Multiplications of such 
operators are carried out with graphs of two kinds of lines and two kinds of vertices. The theo- 
rems are demonstrated on some examples and are useful, e.g., with the recent method of 
moments and in deriving Lie algebras pertinent to quantum chemistry. 

1. Mot iva t ion  and introduct ion 

D y a d  algebras provide a general formulat ion of  quan tum chemistry indepen- 
dent  of  basis set selections when treated in a linearly covariant  fashion [1,2]. Quali- 
tative quan tum chemistry is constructed on a finite n-dimensional linear vector 
space Vn, with starting basis vectors {lei>}, n valency orbitals of  a molecule. Opera- 
tors such as the one-electron Hamil tonian  h and the electron density operator  d 
are dyads in the Vn x V + space with V + the adjoint. A basis for Vn x V + is 
{l el > <ejl }. Dirac  [31 formulated  quan tum mechanics in terms of  kets I > and bras ( I. 
Al though abstract  and combining the Heisenberg and SchrSdinger formulat ions/  
representations,  Dirac 's  algebra was not  fully covariant  under  all basis-frame 
t ransformations.  The recent principle of  linear covariance [2] makes quan tum-  
mechanical  formulat ions fully covariant  with diverse advantages leading for exam- 
ple to the pictorial VIF (valency interaction formula) rules for qualitative chemical  
deductions [4]. Quanti tat ive quan tum chemistry is obtained using the comple- 
ments  of  V~ and Vn x V + in the infinite dimensional Hilbert  space as was done 
somet ime ago in the theory o f  electron correlat ion (the "many-e lec t ron  theory  of  
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atoms and molecules", MET [5] for closed shells and NCMET [6] for non-closed 
shells). Later, these theories were made covariant (ref. [2] and subsequent papers) 
and thereby directly applicable to molecular orbital, valence bond, or localized 
orbital starting points. 

For valence shell qualitative quantum chemistry we have the vector space Vn 
and valency atomic orbital (AO) vectors {[ei)} and the one-electron h which is a p- 
term dyad in Vn x V +. To each molecule there corresponds an abstract (and linear 
invariant [2]) h and its graphs, the VIF, transformable to new VIFs with the pictor- 
ial VIF rules [4]. Dyad algebra based graphs tend to yield more general results 
than matrix based graphs which have been studied extensively [7]. 

The present set of two papers (II being on undirected graphs) treats the multipli- 
cation, in general non-commutative, of abstract operators in V~ x V + and their 
corresponding graphs. Such multiplications are needed, e.g., in applying projection 
operators, symmetry operators, and others, to a molecule and its h, in calculating 
the total energy as Tr dh with d the density operator, in obtaining the powers ofh as 
in the method of moments [8], and in deriving Lie algebras pertinent to quantum 
chemistry. 

Product graphs Gp = G x G' involve during their evaluation, new types of 
graphs of two kinds of vertices and two kinds of lines, reminiscent of, but different 
than, the "networks" introduced and studied for mechanisms (and/or  synthetic 
pathways) in complex reaction mixtures [9-11 ]. 

We first treat directed graphs G and their underlying dyad algebra. 

2. Dyads ,  vectors and their corresponding G's 

The ket-vector [ei) E Vn corresponds to an"out-vertex",  

[el) ~ i ,  > , (1) 

a bra (ej[ to an "in-vertex" 

( e j l ~ . , j .  < (2) 

A dyadic [ei)(ej[ results from the multiplication of eqs. (1) and (2). Of the possi- 
ble products including [ei)lej), (eil(ej[, this is the only one that leads to a new flow 
from i t o j  therefore joined to give a directed line (di-line), 

BU = le,><ejl ~ (i ,-------3---~) × (------w-~j) = i-_ -_j. (3) 

By contrast to a dyadic product of i and j,  a linear combination alei ) + fllej) is 

simply a disconnected collection ofvertices { ~ - f  ~ . ~  }. 
Bji in eq. (3) is the reverse line (i = ./ = j). 
A linear operator B e  V, x V +, e.g. B = b12B12 + B23 + B34 -}- b14B14 -t- B15 is a 

di-graph Gs, superposition ofdi-lines B/j with scalar strengths b/j as in eq. (4). 
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GB 
. 2  

b~2 

3 

5 

Lines with no bkt indicated are of"standard strength - 1". 

(4) 

3. Product graphs: graphs of  two kinds of  lines and two types of  vertices 

A product P = C x D = CD, where, C, D may be vectors or dyads, gives an 
initial "product graph" Gp = Gc x GD, in general non-commutative. It is neces- 
sary to distinguish in Ge, the lines of the left factor Gc from those of the right-fac- 
tor, GD. Draw Gc with wiggle lines (..N....v.~), and right factor Go with ordinary 
lines ( , ~  .). Then Ge is drawn as a di-graph of two kinds of lines superposing 
Gc and GD a s  in eqs. (5). 

Let 
2 

Gc 
4 

2 

4 

3 (5a) 

and 

GD 

4 

3 
(5b) 
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then 
2 

P (5c) 

5 4 

There are two types of unions of lines in a product graph Gp: 
(1) Two lines of the same kind, e.g., lines (45) and (51 )in eq. (5c), or ( ~ )  and (]'3). 
(2) Two lines of differing kind, e.g. ( ~ )  and (34) or (13) and (31). 
Type (1) union is a superposition, i.e. an algebraic sum of dyadics, e.g. 

[e4><esI + [es><el[ above, or ]el)(e2[ q-[el><e3[. 
Type (2) union is a product of a wiggle line with an ordinary lines, the product 

order always being from wiggle to ordinary line with e.g. [e3)(e4[ × [e3)(e4[ or 
[el)(e3[ x [e3)(el[ ineq.(5c). 

L E M M A  

A non-zero product results only when there is a net flow at a type (2)-vertex 
from wiggle to ordinary lines. 

Proof  
i 

whereas 
i 

and 

o r  

i 

lek><eilei><el[ # O, 

lei>(eklet>(eil = 0, 

[ek><eilet><ei[ = 0, 

[ei><eklei><et[ = O. (6) 

Commen t 

We have taken the vectors {lei>} to be an orthonormal (ON) set, <eilej> - ~u. If  
the set is non-ON we can use the linearly covariant formulation and the resulting 
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dual ON sets between contravariant and covariant indices, <ei[ej> ~: 6ij, bu t  
(eilej) = 6~ as shown in ref. [2]. The graph results then remain the same as in the 
ON case discussion of this paper. In the general case, an out-vertex (i -- > ) is 
l ei), whereas an in-vertex ( > = j)  becomes (eJ l, index raised with the metric ten- 
sor A m~ (cf. ref. [2]). 

THEOREM 

In a product graph Ge non-zero product type vertices contract out. The Ge, 
which had two kinds of lines and two types of vertices, then contracts to (is 
"reduced" to) an ordinary di-graph Ge with only ordinary di-lines and one type of 
(ordinary) vertices. 

Proof 

From the lemma above, non-zero terms in Gp = Gc x GD result only from type 
(2) vertices ( ~ " ~ - - ~ )  with a net flow from wiggle lines to ordinary lines as in eq. 
(6). With an ON set {[ei>} (or for non-ON using the dual ON set [2]), vertex (0 is 
eliminated by 

lek><eilei><etl = lek><ezl 

i 

(7) 
k e ~ k ~ , [  

Thus Ge is reduced into a final G~ = Gc x GD with no wiggle lines, the resulting 
ordinary di-graph. 

Example 

In eq. (5c) consider all type (2) vertices with the proper (wiggle to ordinary) net 
flows. These are 

3 
2 

5 4 1 3 
4 

1 / /  3 + ~ 1 3 

4- (8) 

4 
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They are found readily by taking one wiggle line at a time and looking at flows 
from it. 

By the theorem, each flow vertex in eq. (8) is taken out yielding 

-< 

3 

4 5 1 

>- (9) 

? 1 
+ + 

4 

Thus Ge = t~c x Go is the superposition of the surviving lines in eq. (9) out of 

all the lines in (~c and t~D; i.e., 

Gp = 

4 jt 
G D  

1 3 
>- 

o r  • 

G c x 

1 
X 

4 5 

= G p  
(10) 

The treatment above has been for general di-graphs, i.e. graphs which may con- 
tain loop and/or  multi-lines. As in the example above, loops and multi-lines may 
also arise even if the initial G's did not contain any. 
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Note that if a (~ depicts multi-lines between two vertices, the di-lines with the 
same direction are algebraically added to result in one same-direction-line of some 
net strength, e.g., 

f 

i i 

-2.5 

,,,., .2 .5  

t_.-- n 
0.5 

0.5 

(11) 

but multi-lines remain in, e.g., 
3 3 

-2.5 -2.5 

The directions of lines are unrelated to the algebraic signs of their strengths. 
For convenience, we summarize below, the products of some algebraic objects. 

4. Products  of  elementary algebraic objects and their graphs 

The cases below, useful in carrying out the multiplication of larger digraphs fol- 
low from the lemma and the theorem given above (or directly from dyad algebra): 

(1) Product ofdi-line with in- or out-vertex: 

~ = X ~ /  = 0 if kpj 
i j k 

I 

i 

i × .  / ¢r 
j ~ = 

i 

i 

J 
= ×x . .  , / / %  J j ~ - - - o  

(12) 

C O R O L L A R Y  

Di-line acting on vector [u) - al lel ) + a2le2) + . . .  anle,) gives, e.g., 
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2 

, - - - -~ x{zo zo ............. 7}o -¢A', - / ,  
Ot 2 

The line out of (2) comes unto (1) eliminating the (12) along with its coefficient. 
(2) Product of two di-lines: 

a) J k / x  =0 
i ~" .~ !  (i,j ¢ k, l) (disconnected lines) 

b) y',v, A i x - -  = i k 

k i k l~g; 

c) 

d) 

J 

• i _ _  ~-~ i 
i J = 

i 

J 
/ x / _ < > ,  

i 
=0  

(3) Product of loops: 

i 

J j 

= 0 

(4) Product of di-line with loop: 

' 9 
1 

for i # j 
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(5) Product of loo 

i 

with di-line: 

i i ~, i i 

5. T r a c e  o f  a d i - g r a p h  

(Tr G) is given by the sum of the strengths of its loop only, since 

n 

~ }7_. + } 2  
i¢j i 

n 

Tr G = ~ijTr Bij + {iTr  Bii • 

lines loops 

But, 

TrB/j = Tr[lei)(ejl ] = (eilej) = 0 (i ¢ j)  

and 

Tr Bii : Trlei>(ei[ : (eilei> --- 1 

for ON {lej)} or for non-ON with the dual ON sets [2]. 
Thus 

n 

Tr G = ~ ~i = sum of loop strengths. 
i ) l  

In computing Tr Gc x Go one need look only at G? segments that would yield 
loops per previous section above. 

In the next paper II, the results of this paper I are used to obtain the products 
of undirected or line graphs, G with or without loops. Such G may correspond to 
Hermitian operators such as the one-electron Hamiltonian or the electron density 
operator. 
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